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SUMMARY

When multiple pieces of information bear on a deci-
sion, the best approach is to combine the evidence
provided by each one. Evidence integration models
formalize the computations underlying this process
[1–3], explain human perceptual discrimination
behavior [4–9], and correspond to neuronal re-
sponses elicited by discrimination tasks [10–14].
These findings suggest that evidence integration is
key to understanding the neural basis of decision
making [15–18]. But while evidence integration has
most often been studied with simple tasks that limit
deliberation to relatively brief periods, many natural
decisions unfold over much longer durations. Neural
network models imply acute limitations on the
timescale of evidence integration [19–23], and it is
currently unknown whether existing computational
insights can generalize beyond rapid judgments.
Here, we introduce a new psychophysical task and
report model-based analyses of human behavior
that demonstrate evidence integration at long
timescales. Our task requires probabilistic inference
using brief samples of visual evidence that are
separated in time by long and unpredictable gaps.
We show through several quantitative assays how
decision making can approximate a normative inte-
gration process that extends over tens of seconds
without accruing significant memory leak or noise.
These results support the generalization of evidence
integration models to a broader class of behaviors
while posing new challenges for models of how
these computations are implemented in biological
networks.

RESULTS

The normative basis of the evidence integration framework and

its ability to explain perceptual discrimination behavior suggest

that its principles are generally relevant to understanding deci-

sion making. But at present, potential limitations on the practi-

cable timescale of integration are a critical obstacle to this gener-
alization. While perceptual discrimination tasks afford tight

experimental control and embody many important aspects of

decision making, they rarely demand integration over durations

that are characteristic of complex natural behaviors. Humans

can deliberate about natural decisions for many seconds—or

even much longer—and often consider multiple discrete pieces

of information before committing to a choice. Making such deci-

sions through evidence integration would require maintaining a

high-fidelity representation over time and updating it in response

to new information. Biophysical models show how this can

be achieved in neural networks over relatively short timescales,

but they imply acute limitations on prolonged deliberation

[20, 23].

We developed a new psychophysical paradigm to quantify

temporal limitations on evidence integration (Figure 1). Our

paradigm builds on the success of established tasks by

providing evidence to the subject in the form of simple visual

stimuli that can be parametrically controlled with high precision

and whose basic encoding and representation in sensory cor-

tex are well understood. Instead of displaying these stimuli in

a continuous stream, we presented multiple brief exposures

with variable intensity that were separated in time by long

and unpredictable gaps. This simple manipulation produced a

long and variable timescale of deliberation, extending it on

many trials to tens of seconds (mean trial duration, 10.1 ± 5.6

s; range, 2.2–34 s). We leveraged our experimental control

over the evidence and the variability in its strength, quantity,

and timing to identify the computations underlying decision-

making behavior.

We trained five human subjects on this task until they

reached an accuracy criterion (> 76% correct, achieved over

2–4 sessions) and then collected multiple sessions of data

for analysis. We framed this analysis with three questions.

First, did the subjects combine information from multiple sam-

ples before reaching a commitment? Second, did they use the

graded quantity of evidence provided by each sample? Third,

was their performance limited by loss of information over

time?

To answer these questions, we evaluated several different

computational models that enable quantification of the deci-

sion-making process (Figure S1). This quantitative approach

is necessary because behavior can qualitatively resemble

integration while lacking its key characteristics. We focus here

on four specific models: one implements the normative policy

and serves as a baseline for comparison, while the others
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Figure 1. Experimental Design

(A) Subjects viewed brief samples of a contrast pattern while maintaining

central fixation. They were cued at the end of the trial to report their decision

by making a saccade to one of two targets and received feedback about the

accuracy of their choice.

(B) Each sample had a different contrast, randomly drawn from one of two

overlapping Gaussian distributions in log contrast space. Each trial was

generated using samples from the same distribution; the subject’s task was to

infer which one.

(C) 1–5 samples were shown before cuing a response, determined by drawing

from a truncated geometric distribution.

(D) Each sample was followed by a gap lasting either 1–4 s (shorter gap ses-

sions) or 2–8 s (longer gap sessions), determined by drawing from one of two

truncated exponential distributions.

Figure 2. Integration of Evidence across Samples

(A) Sample mean psychometric function (mPMF), showing the relationship

between mean strength of evidence supporting a choice of ‘‘high’’ and the

probability of making that choice.

(B) Sample count psychometric function (cPMF), showing the relationship

between the number of samples in a trial and the probability of making a

correct choice.

(C) Reverse correlation functions (RCFs) shown separately for trials with

different sample counts.

In all panels, black points and error bars show means and bootstrap 95% CIs,

and blue and gold lines show analytic functions from the best-fitting linear

integration and extrema detection models, respectively. All panels show

aggregate data and model fits; see Figure S1 for model predictions and Fig-

ure S2 for individual data and fits.
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establish the presence of integration and quantify its limitations.

The models span a space of mechanisms within the general

sequential sampling framework. They operate by using each

sample, denoted x, to update a decision variable, denoted V.

The evidence is quantified in terms of the log-likelihood ratio

(LLR) that the sample was generated from the high-contrast

distribution, and the sign of the decision variable at the end of

the trial determines the choice.

Integration of Evidence across Samples
Optimal performance in the task can be achieved by summing

the evidence afforded by each sample in units of LLR with con-

stant weighting across time. This computation can be formalized

in a ‘‘linear integration’’ model defined by the following update

equation:

Vi =Vi�1 + xi + xh (1)

where Vi is the decision variable after observing sample i, and

V0 = 0. Choice variability arises because the internal representa-

tion of each sample is corrupted by noise, represented by xh (Fig-

ure S1A). This noise is stimulus-dependent, but it may arise from
2 Current Biology 28, 1–7, December 3, 2018
sources beyond sensory encoding [4, 24, 25]. Assuming

Gaussian noise, the only free parameter is sh, the standard devi-

ation of xh in units of LLR. The decision variable updates are in-

dexed by the ordinal sample number, as this model does not use

information about the duration of the gaps. Linear integration is

optimal in that it is limited only by variability in stimulus genera-

tion and noisy encoding of each sample; no other information

is distorted or lost during deliberation [1–3].

Using this model, we derived analytic expressions for three as-

says of decision-making behavior (aggregate performance: Fig-

ure 2; individual performance: Figure S2; blue lines). Details of

the mathematical derivations are provided in the STAR Methods

section. The first behavioral assay shows how choice depends

on themean strength of the samples (‘‘samplemean psychomet-

ric function’’ or ‘‘mPMF’’; Equation 9; Figures 2A and S2A). It

demonstrates high behavioral sensitivity to the evidence. The

second assay shows how accuracy depends on the number of

samples in a trial (‘‘sample count psychometric function’’ or

‘‘cPMF’’; Equation 10; Figures 2B and S2B). It demonstrates

that performance benefits with more samples. The third assay



Figure 3. Integration of Graded Stimulus Evidence

(A) Data and model cPMFs, showing how the data deviate from a qualitative

signature of binarized evidence transformation (counting model). Black points

and error bars showmeans and bootstrap 95%CIs; purple line shows analytic

prediction of the best-fitting counting model.

(B) Estimated subjective weighting of samples with different evidence values.

Black points and lines show logistic regression coefficients and 95% CIs for

the behavioral data; purple band shows logistic regression coefficients and

95%CIs for simulated data from the counting model with parameters that best

fit the choices.

Both panels show aggregate data and model fits; see Figure S1 for model

predictions and Figure S3 for individual data and fits.
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relates choice accuracy to stochastic fluctuations in information

across samples (‘‘reverse correlation function’’ or ‘‘RCF’’; Equa-

tion 11; Figures 2C and S2C). It demonstrates approximately

constant weighting of the evidence over time. Each effect was

replicated in individual subjects (Figure S2), suggesting that inte-

gration of evidence can explain both average behavior and indi-

vidual idiosyncrasies.

Based on these three assays, the choice data appear gener-

ally consistent with integration. But minor deviations from the

linear integration model (e.g., a shallower cPMF) imply that it is

not a full account of the decision-making process. While several

different factors could produce these deviations (see Discus-

sion), a primary concern is whether the data can be explained

by a process that lacks integration altogether. For example, a

network with a relatively short integration time constant but the

ability to maintain a discrete choice state in working memory

could perform our task by sequentially sampling before deciding

based on a single stimulus. We evaluate this approach with a

model that compares each sample individually against a detec-

tion threshold, ignoring samples prior to and following a commit-

ment. The process can be termed ‘‘extrema detection’’ [26] and

leads to the following update equation:

Vi =

8<:
+ 1; if Vi�1 = 0 and xi + xh > + qx
�1; if Vi�1 = 0 and xi + xh < � qx
Vi�1; if Vi�1s0 or � qx < xi + xh < + qx:

(2)

As in the linear integration model, xh represents Gaussian

noise with standard deviation sh; the other free parameter, qx,

represents the threshold.

Despite using fundamentally different computations, extrema

detection can superficially mimic evidence integration: both the

strength and number of samples will influence choice (Fig-
ure S1B). But fitting the model to the choice data shows that it

cannot explain the behavior. The linear integration model had a

higher cross validated log-likelihood (aggregate DLLCV: 788.7;

individual DLLCV: 95.2–288.4), and extrema detection could not

account for performance in any of the behavioral assays (Figures

2 and S2; gold lines). Therefore, the observed behavioral perfor-

mance could not have been obtained using only individual sam-

ples, implying that evidence was integrated across the gaps.
Integration of Graded Stimulus Evidence
The linear integration model operates on an untransformed

representation of the stimulus evidence and stores the deci-

sion variable in an analog format. However, the long gaps in

our experiment might encourage alternate strategies that

would permit discretized storage. For example, the subject

could determine whether each sample appears higher or lower

than average, maintaining only the outcome of these decisions

over time. Doing so would cause the decision variable to

reflect a discretized count, implementing a linear integration

process over binarized representations of the evidence. This

‘‘counting’’ model can be defined with the following update

equation, using the same terms as in Equation 1:

Vi =Vi�1 + sign
�
xi + xh

�
: (3)

The counting model is structurally similar to the linear integra-

tion model (compare Equations 1 and 3) and makes broadly

similar predictions (FigureS1C). Its likelihoodwasonlymoderately

lower than linear integration (aggregate DLLCV: 71.5; individual

DLLCV:�0.5–27.6). Despite this similarity, the countingmodel ex-

hibits a distinctive qualitative signature that is not present in the

data. Representing the decision variable with a discrete count

leads to a tie on many trials with an even number of samples,

requiring a random guess to generate a choice. As a result, the

model’s expected accuracy does not improve relative to trials

with the next smallest odd number of samples, a prediction that

is independent of the noise parameter (Figure S1C; Equation 37).

In contrast, the data exhibit a clear improvement in accuracy with

additional samples (Figures 3A and S3B; Equation 6; aggregate

model: b1 = 0.25 ± 0.04; p < 10�8; individual models: 5/5 subjects

p < 0.05).

Potential lossof information fromabinarized representationcan

also be evaluated by estimating the subjectiveweight of evidence

afforded by samples with different objective strengths (Equa-

tion 5). In the counting model, discretization curtails the influence

of strong samples. By comparing subjective weights estimated

from choice data to weights obtained by simulating choices

from the best-fitting counting model (Figures 3B and S3C), it is

apparent that strong samples contributed more to the decision

than would be expected for counting. This analysis does suggest

moderate compression of the evidence from strong samples,

although this would not be inconsistent with linear integration in

general (seeSTARMethods).With respect to thedecision-making

process itself, we conclude that the data are best explained by

integration of graded evidence across multiple samples.
Minimal Influence of Memory Leak or Noise
The normative model in Equation 1 does not require any informa-

tion about the timing of the sample presentations or the duration
Current Biology 28, 1–7, December 3, 2018 3



Figure 4. Minimal Influence of Memory Leak or Noise

(A) Data and model cPMFs. Black points and error bars show means and

bootstrap 95%CIs for the behavioral data, blue line shows analytic function for

the best-fitting linear integration model, and green band shows simulated

performance for the best-fitting leaky integration model.

(B) Data and model RCFs, aligned to the end of the trial. Element colors are as

in (A); solid lines show functions conditioned on correct choices and dashed

lines show functions conditioned on incorrect choices. Note the apparent

nonlinearity in the linear integration model RCF, an artifact of combing trials

with different sample counts (see STAR Methods).

(C) Integration model parameter fits. Green elements show parameters for the

leaky integration model: points showmaximum likelihood estimates; thick and

thin error bars show bootstrap 68% and 95% CIs, respectively. Blue crosses

show sh estimated with the linear integration model.

(D) Data mPMF plotted separately for trials with shorter and longer gaps

between samples.

All panels show aggregate data and model fits; see Figure S1 for model pre-

dictions and Figure S4 for individual data and fits.
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of the gaps between them. We expected, however, that the pro-

longed deliberation timescale would make two limitations on

working memory apparent [20, 23]. First, information from earlier

samples would exert less influence because it would ‘‘leak’’ from

memory. Second, additional behavioral variability would be

caused by integration of diffusive noise in the absence of sensory

input. To quantify the influence of these limitations, we extended

Equation 1 into the temporal domain and explicitly modeled

them (Figure S1D). This ‘‘leaky integration’’ model can be defined

by the following update equation:

VðtÞ=Vðt � DtÞ � DtlVðt � DtÞ+ xðtÞ+ IðtÞxh + x
ε
: (4)

In this equation, l represents thememory leak rate (the inverse

of the integration time constant t) in units of s�1. xðtÞ represents
the strength of evidence at time t and is 0 during the gaps. IðtÞ
is an indicator variable that governs the influence of stimulus-

dependent noise, xh � Nð0; shÞ, and x
ε
� Nð0; sεÞ represents

memory noise, which accumulates throughout the gaps.
4 Current Biology 28, 1–7, December 3, 2018
Surprisingly, fitting the leaky integration model to choice

behavior revealed minimal influence of these factors. After opti-

mizing the free parameters to maximize the likelihood of the

choices, we simulated data for comparison to the behavioral da-

taset and fits of the normative linear integration model. The best-

fitting leaky integration model could not be distinguished from

linear integration in terms of its simulated cPMF (Figures 4A

and S4A) or RCF (Figures 4B and S4B), and a quantitative

comparison only marginally favored the full model (aggregate

DLLCV: �1.4; aggregate likelihood ratio test: c2
2 = 10.1;

p = 0.006; individual likelihood ratio tests p < 0.05 in only 1/5

subject). The best-fitting leak rates and memory noise magni-

tudes were both close to 0 (Figure 4C), implying an integration

time constant that was longer than 25 s for all subjects and effec-

tively infinite for 4 out of 5 subjects.

Minimal loss of information can also be seen using a model-

free approach. Subjects performed the task in two different con-

ditions where the gaps were sampled from distributions with

different minimum, maximum, and mean durations (Figure 1D).

Despite large differences in gap durations, performance did

not appear to substantially vary (Figures 4D and S4C). Statisti-

cally, behavioral sensitivity to the strength of evidence was

similar (Equation 7; aggregate model: b3 = 0.29± 0.18; p =

0.11; individual models: p > 0.05 in 4/5 subjects and p = 0.03

in S4). In fact, behavior in one of the conditions could be used

to predict behavior in the other. These results further emphasize

the functional invariance of the decision-making process to the

timescale of deliberation, implying the existence of a highly flex-

ible and efficient system for combining the evidence from each

sample to make decisions at a level approaching normative

performance.

DISCUSSION

Evidence integrationmodels reflect a synthesis of computational

insights spanning cognitive and biological levels of analysis

[8, 27]. They have been tested in a variety of experimental

contexts, including perceptual discrimination of continuous

[10, 11, 28] or pulsed [4, 12, 29, 30] stimuli and probabilistic infer-

ences similar to those in our experiment [13, 24, 31, 32]. How-

ever, because previous tasks had relatively short timescales,

there has been persistent concern about the scope of behaviors

to which these insights apply.

Behavioral performance and neural responses in existing

tasks can be explained by network models that overcome bio-

physically limited time constants of individual neurons through

emergent attractor dynamics [3, 19, 21, 33]. These networks

form an important bridge between cognitive theory and biolog-

ical data. However, existing models have specific failure modes

that would be apparent at prolonged timescales [3, 23]. Rapid

discrimination tasks are oftenmodeled by networkswith bistable

point attractor dynamics [21, 34]. In the prolonged absence of

input, however, a decision variable computed this way would

either decay back to its starting point or converge onto a terminal

decision state [35]. Alternatively, maintenance and manipulation

of analog information can be achieved using line attractor dy-

namics [36, 37], even without persistent input. But it is widely

thought that line attractor networks require fine tuning to avoid

memory leak and that even small amounts of memory noise
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would accumulate to dominate the representation over pro-

longed timescales [19, 20, 23, 38].

None of these failure modes emerged when we pushed the

decision-making process an order of magnitude beyond the

timescale of conventional tasks. This suggests either that

the intrinsic timescale of biological networks is much longer

than currently thought [22] or that network models require

augmentation. Possible accommodations could involve addi-

tional mechanisms that add robustness to leak and noise

[39, 40] or different, functionally feedforward network architec-

tures [41]. More radically, prolonged integration could recruit

fundamentally distinct neural mechanisms to perform function-

ally similar computations. Might evidence integration engage a

long-term memory system? As this question comes into focus,

we note that prolonged yet controlled deliberation would make

the integration process amenable to study with functional MRI,

complementing previous investigations of gradual perceptual

judgments [42, 43].

Integration without leak is the normative policy in our task, but

forgetting can be adaptive in nonstationary environments. Previ-

ous work has suggested that humans can adopt a leak rate that

matches environmental statistics when performing signal [44]

or change-point [45] detection. Our results show that it is also

possible to eliminate leak in situations where it is optimal to do

so. By ruling out fundamental limitations on integration, our find-

ings may also prompt a re-interpretation of recency bias, which

is sometimes observed in similar tasks [24, 46, 47]. Recency bias

is often attributed to memory leak, but absence of leak at pro-

longed timescales suggests that these effects, when present,

might be better explained by decision strategy [48].

While behavior in our task was approximately normative, small

but systematic deviations from the model fits imply that linear

integration cannot fully explain the data. Figure 2 suggests that

suboptimal performance arises from modest over-weighting of

early samples. This would be consistent with the presence of

a decision bound that can terminate integration prior to the

response cue [5, 8, 11, 27, 49]. We do not quantitatively evaluate

bounded integration because, despite the presence of these

qualitative signatures, our experimental design makes the height

of the bound difficult to estimate. The asymmetry between the

RCF for correct and error trials also suggests that a bound, if

present, enacts only provisional commitments that can be

revised by further evidence [50], analagous to a confirmation

bias [32, 51]. Variants of our task that accentuate the influence

of these factors may afford computational modeling of their

origin and provide insight into suboptimal decision-making in

naturalistic contexts.

Our results quantify the influence of memory leak and noise on

prolonged integration, demonstrating that neither pose a funda-

mental challenge for naturalistic decisions. While surprising

given the biophysical properties of neurons, these findings

create an opportunity to generalize the powerful evidence inte-

gration framework beyond simple perceptual judgments. Many

open questions remain about the computational and neural

basis of natural decision-making. Answering them will require

formal models that can make connections across levels of

analysis to explain how biological systems generate complex

behaviors. Evidence integration is a promising candidate for

these efforts.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Five human subjects, (four male and one female; ages 19–40) participated in the experiment. All had normal or corrected-to-normal

vision. One of the subjects was author RK; the others were naive to the purposes of the experiment. All experimental procedures were

approved by the Institutional Review Board at New York University, and the subjects provided informed written consent before

participating.

METHOD DETAILS

The subjects were seated in an adjustable chair in a semi-dark room with chin and forehead supported before a cathode ray tube

display monitor (21 in Sony GDM-5402; 16003 1200 screen resolution; 75 Hz refresh rate; 8 bit color; 52 cm viewing distance).

The display was calibrated with a photometer and gamma corrected to have a linear response. The mean luminance of the display

during the experiment was 35 cd/m2. Viewing was binocular. Gaze position was monitored at 1 kHz using a high-speed infrared

camera (SR-Research; Ottowa, Canada). Stimulus presentation was controlled using PsychoPy [52].

The experimental task is diagrammed in Figure 1. Each trial was initiated when the subject looked at a central fixation point

(0.3� diameter). 500 ms after fixation, two response targets (0.5� diameter) appeared 5� above and 10� to the left or right of fixation,

and a small protuberance (0.1� length) extended from the fixation point to cue the location at which the visual stimulus would be

presented on that trial.

The visual stimulus was a circular (6� diameter) contrast patch constructed as the average of 8 sine wave gratings at evenly spaced

orientations. Each grating had a spacial frequency of 2 cycles per degree, and the phases of the gratings were independently ran-

domized on each presentation. The stimulus edges (20% of the radius) were blended with the background using a raised-cosine

mask. The stimulus was centered 2� below and 5.6� either to the left or right of fixation and was always compatible with the cue.

Within a given trial, the stimulus would appear in the same location, but the location varied randomly between trials. Each stimulus

presentation had a duration of 200 ms.

There were 1–5 stimulus presentations (‘‘samples’’) per trial, drawn from a truncated geometric distribution with p = 0.25. This dis-

tribution has a nearly flat hazard function, meaning that the probability of the trial ending is approximately constant after each sample.

Thismakes it impossible for the subject to adopt a strategy of preferentially allocating attention to the samples immediately preceding

the response. We note that this design feature makes us less likely to observe a recency bias, whichmight be incorrectly attributed to

memory leak.

The contrast of the stimulus varied across each presentation. Stimulus contrast, C, was defined in units of Michelson contrast and

was determined by setting each constituent grating to a contrast of
ffiffiffi
8

p
C before averaging. This procedure generated contrast

patches with root-mean-square (RMS) contrast that was equivalent to single gratings drawn at the specified value of C.

The experimental task required probabilistic inference on the basis of stimulus contrast. Each trial was defined, with equal prob-

ability, as either a ‘‘low-contrast’’ or ‘‘high-contrast’’ trial. This determined which of two overlapping distributions would be used to

generate the contrast for each stimulus presentation in that trial. The distributions were defined as Gaussians in log10 contrast space

with means of �1.1 or �0.9 and standard deviations of 0.15. The subject’s task was to infer, using the perceived contrast of each

stimulus presentation, whether the trial was generated using the low-contrast or high-contrast distribution.

Each stimulus presentation was separated by a gap with a duration drawn from a truncated exponential distribution. The data re-

ported here were collected across two different experimental conditions: ‘‘shorter’’ gaps (1–4 s) and ‘‘longer’’ gaps (2–8 s). These

conditions appeared in separate experimental sessions, and subjects performed the shorter gap sessions first. The gaps prior to

the first and following the last stimulus presentations were determined using the same distribution as the inter-stimulus gaps.
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At the end of the trial, the fixation point disappeared, which cued the subject to report their decision bymaking a saccadic response

to one of the two response targets. After choosing one of the targets, the subject received auditory and visual feedback about the

accuracy of their response. Accuracy was defined in terms of whether the subject chose the target corresponding to the distribution

that was actually used to generate the stimuli for that trial. Response target assignments were stable across the experiment. The

subject was allowed to blink during the trial but was otherwise required tomaintain fixation prior to responding. Trials were separated

by an inter-trial interval of at least 3 s.

Each subject was trained on the task for 2–4 sessions prior to collection of the data reported here, and theywere required to reach a

criterion level of performance (session-wise accuracy > 76%) before continuing. They additionally performed two practice sessions

with longer gaps prior to collection of longer-gap data for analysis. No subject failed to reach the accuracy criterion. Experimental

instructions emphasized accuracy, and subjects were explicitly informed that the best way to maximize performance would be to

make their decision on the basis of what they perceived as the average contrast of all the stimuli presented in each trial. Subjects

typically performed 6 blocks (7 min duration) in each session and received feedback about their accuracy after each block.

Not including training, each subject contributed 18 separate 1-hour sessions to the data reported here (6 sessions with shorter

gaps and 12 sessions with longer gaps). In total, our analyses involved 14,869 trials (6,500 with shorter gaps and 8,369 with longer

gaps). Control analyses showed that behavior was stable over the course of the experiment; therefore, our main results are unlikely to

depend on the amount of experience subjects had with the task.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
For our primary analysis of the different computational models, we characterized the data using three behavioral assays: one relating

variability in behavioral responses to average stimulus strength (the samplemean psychometric function; mPMF), one relating choice

accuracy to the number of evidence samples (the sample count psychometric function; cPMF), and one relating choice accuracy to

stochastic variability in the stimulus over time (the reverse correlation function; RCF).

The mPMF illustrates how behavioral responses depended on the average strength of evidence in each trial. The evidence value

corresponding to each stimulus contrast was defined using the log-likelihood ratio of the two generating distributions (positive

evidence supports ‘‘high’’ and negative supports ‘‘low.’’) Our experimental design produces a large amount of trial-to-trial variability

in the strength of available evidence. To characterize the effect of this variability, we computed the proportion of ‘‘high’’ choices within

evenly spaced bins of trials defined by the mean evidence across samples (bin width: 0.25, except for the lowest and highest bins

which were unbounded on one side).

The cPMF illustrates how accuracy depended on the number of stimulus samples that were presented on each trial. To charac-

terize this relationship, we computed the proportion of trials with the same number of samples where the subject chose the correct

target (the target corresponding to the distribution that generated the observed evidence).

The RCF provides insight into the dynamics of the decision-making process by estimating the relative leverage on choice of

evidence presented at different points in time. This approach exploits the random variability in the strength of evidence afforded

by each stimulus presentation. To estimate this function, we grouped trials based on response accuracy and then computed the

mean strength of evidence supporting the correct target across time. Note that because we are conditioning on accuracy and not

choice, the resulting function should not be considered an estimate of the sensory kernel. Instead, we are using the logic of reverse

correlation to define a function that can be compared between data andmodel. This function represents a conditional expectation as

a function of time. For some analyses, we averaged over ordinal sample positions (Figures 2C and S2C). For other analyses (Figures

4B and S4B), we used the actual timing of stimulus events by computing a running average over all stimuli occurring within a bin of

width 4 s at evenly spaced time points (bin width: 0.25 s). Under linear integration, the height of the RCF depends on the square root of

the sample count [54]. This causes an artifact in plots that show an RCF computed from all trials (Figures 4B and S4B). Therefore,

nonlinear effects in those plots do not necessarily reflect nonlinear weighting of evidence. This can also be seen in an ordinal analysis

by comparing Figures 2 and S1.

To estimate the influence of individual samples with different objective weights of evidence on the subjects’ choices, we used an

approach described in previous work [55]. This analysis estimates the subjective weight of evidence afforded by samples falling into

evenly spaced bins (bin spacing: 0.25) using the following logistic regression model:

logit½Pðresponse= highÞ�=
X
k˛bins

bkNk ; (5)

Where Nk is the number of samples appearing in each trial with objective strength falling in bin k. We binned stimulus strengths

because the objective values were continuous. The regression coefficient corresponding to each bin, bk , can be interpreted as an

estimate of the subjective weight of samples falling within that bin.

Figures that show these functions for behavioral data have 95% bootstrap confidence intervals [56]. Confidence intervals were

computed by resampling trials with replacement and estimating the statistic of interest across 10,000 iterations. In figures showing

aggregate data, bootstrapping was performed at the level of trials and was irrespective of subjects. The error bars correspond to the

2.5 and 97.5 percentiles of the resulting distribution.
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We additionally performed several statistical analyses of choice behavior using logistic regression. To determine whether choice

accuracy improved consistently with additional samples, we tested whether accuracy differed for trials with odd and even sample

counts using the following function:

logit½PðcorrectÞ�= b0 + b1P+ b2M: (6)

In this equation, P is an indicator variable specifying the parity of the sample count on each trial (odd versus even), and M is an

indicator variable specifying whether the sample count on each trial was 1–2 or 3–4. This analysis excluded trials with 5 samples

because corresponding trials with 6 samples did not occur in the experiment. The null hypothesis (a prediction of the countingmodel)

is that sample parity would have no effect ðH0 : b1 = 0Þ.
To evaluate differences in behavioral performance between the longer and shorter gap conditions, we used a logistic regression

model to test for an interaction between the influence of the mean evidence strength and the gap condition:

logit½Pðresponse= highÞ�= b0 + b1X + b2I+ b3IX: (7)

In this equation, X is the mean strength of evidence across samples in a trial, and I is an indicator variable specifying the gap dura-

tion condition. The null hypothesis was that the influence of stimulus evidence on choice did not vary across gap duration conditions

ðH0 : b3 = 0Þ.

General computational modeling approach
We identified the computational properties of the decision-making process by fitting and evaluating several quantitative models. The

models spanned a space of computations within the general sequential sampling framework, sharing a common structure but

differing in ways that provided leverage on our three main questions about the influence of temporal prolongnation and discontinuity.

Our general approach was to fit the free parameters of each model using the sequence of stimuli and the subject’s response on

each trial and then to evaluate the optimized model performance using the behavioral assays described above. Where feasible, we

derived analytic expressions for model performance on the behavioral assays. When analytic solutions were too complex or not

possible to derive, we relied on Monte Carlo simulations. In this section, we provide general expressions for the model-fitting

procedure and the predictions about the behavioral assays. In subsequent sections, we derive the specific equations used for

each model and assay.

Model fitting was performed in the maximum likelihood framework. For each model, we found the parameter set q that maximized

the log-likelihood of observing the set of responses R given the set of stimulus sequences S across all trials. Let xi represent the

evidence afforded by the ith stimulus presentation on trial j, and let rj represent the subject’s response (‘‘low’’ or ‘‘high’’) on that

trial. In practice, we need to derive only the probability of one of the responses because Pðrj = lowÞ = 1� Pðrj = highÞ. Assuming

independence between trials, the log-likelihood of the data under each model is

lnLðR jS; qÞ=
Xm
j = 1

ln½Pðrj
�� x1.xn; qÞ�: (8)

This function was numerically optimized for each model using the Nelder-Mead algorithm as implemented in scipy [53].

To obtain confidence intervals on the optimized log-likelihood and parameter values, we bootstrapped the maximum likelihood

estimation procedure. On each of 1000 iterations, we randomly resampled trials (with replacement) before re-estimating the model

parameters. The resampling procedure maintained the proportion of trials with each number of total samples. To obtain confidence

intervals on themodel parameter values, we used percentiles of the bootstrap distribution (i.e., for 95%CIs, we used the 2.5 and 97.5

percentile of the distribution).

We quantitatively compared the fit of the normative linear integration model to each of the other three candidates in terms of

differences in the cross-validated log-likelihood (DLLCV) of the choice data after optimizing the parameters. The DLLCV measure

was defined so that positive scores indicated higher likelihoods for the linear integration model. To obtain cross-validated log-likeli-

hood scores, we performed k-fold cross-validation by splitting the behavioral datasets by experimental session (k = 18). Aggregate

DLLCV scores were calculated by summing the log-likelihoods from themodel corresponding to each individual subject before taking

the difference. Because the linear integration model is nested within the leaky integration model (they are equivalent if l and sε both

equal 0), we also used a likelihood ratio test to compare these models.

We further evaluated model performance in terms of how well model expressions for the three behavioral assays described in the

previous section corresponded to the behavior of the subjects. Model expressions for the behavioral assays were derived using only

the optimized model parameters and the generating statistics of the task, not the specific stimulus sequences on each trial.

In the following equations, mx and sx represent, respectively, the mean and standard deviation of the evidence distribution for the

‘‘high’’ condition in units of LLR. Note that the distributions for the two conditions are symmetric around LLR = 0, so the generating

mean for the ‘‘low’’ condition is � mx. Sometimes we will work only with the positive distribution corresponding to mx, and at other

times we will work with the set D = f� mx; + mxg. Finally, let N represent the distribution of sample counts across trials, and

let n represent a specific count.

To obtain a model mPMF, we compute separate predictions for each generating distribution and sample count, and we then

combine them into the full prediction using a weighted sum. Therefore, the mPMF can be expressed, in general, as
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Pðr = high j x;D;N; qÞ=
X

n˛N;mx˛D

PðN= nÞPðD=mxÞPðr = high j x;n;mx;sx; qÞ: (9)

The model cPMF can be expressed, in general, as

Pðcorrect jn;mx; sx; qÞ: (10)

To generate a model RCF, we take the same approach as with the mPMF: we compute separate predictions for trials with different

sample counts and then combine them into a full prediction. While the two psychometric functions represent probabilities, the

reverse correlation represents a conditional expectation of stimulus evidence given response accuracy, C. Because we are condi-

tioning on accuracy, and not choice, the RCF is defined in terms of evidence supporting the correct alternative, which we denote as

x
0
i , where x

0
i = xi for the ‘‘high’’ distribution and x

0
i = � xi for the ‘‘low’’ distribution. Therefore, the RCF can be expressed, in general, as

E
�
x

0
i

��C;N;mx;sx; q
�
=
X
n˛N

PðN= nÞE�x0
i

��C;n;mx; sx; q
�
; (11)

where N is the set of sample counts across trials, and C defines whether the RCF is for a correct or error response.

To draw a time-resolved RCF, we took a weighted average of these values across ordinal sample positions where the weights cor-

responded to the probability that a sample at time t was the ith sample in that trial. Probabilities were estimated empirically from the

behavioral dataset.

In the following sections, we derive specific expressions for the forms of these functions under the assumptions of differentmodels.

Except where noted, the model predictions were computed using numerical integration algorithms as implemented in scipy.

Linear integration model
In the linear integration model, each stimulus affords a quantity of evidence toward the decision, which is noisily encoded, and the

perceived evidence afforded by different samples are summed. The summed evidence represents a decision variable, V , which is

defined in Equation 1. The response is determined by the sign of the decision variable at the end of the trial:

rj =

�
high if Vn > 0
low if Vn < 0:

(12)

It is important to note that, in this model, linearity applies to the integration process. Our main question concerns a general class of

models with this property, including those in which each sample of evidence undergoes a nonlinear transformation during encoding.

In this section, we define amodel with untransformed evidence.We also consider a special case of nonlinear transformation whenwe

evaluate the counting model. An intermediate subclass of models, which non-linearly compress evidence from strong samples, has

also been proposed to explain behavior in rapid perceptual averaging tasks [25, 57]. Some features of our data (Figure 3B) appear

consistent with this proposal. Similarly, complexities in contrast perception [58] could lead to a nonlinear transformation of evidence

during encoding. Further understanding of these issues will be necessary for developing a complete account of decision-making. We

do not pursue them here because they are orthogonal to our main question, which concerns the properties and limitations of the

integration process itself.

Assuming that the noise is independent for each sample, the decision variable V can be represented by aGaussian distributionwith

a mean at the sum of the evidence,
P

xi, and a standard deviation that grows with the square root of the number of samples, n. Inte-

grating over the possible values of accumulated noise provides the probability of choosing each alternative (cf. Equation 8):

Pðrj = high j x1.xn;shÞ =PðVn > 0 j x1.xn;shÞ

=

ZN
0

N
�X

xi;
ffiffiffi
n

p
sh

�
(13)

where
R b
a Nðm;sÞ corresponds to the integral of a one-dimensional Gaussian distribution with mean m and standard deviation s taken

with respect to the one-dimensional variable whose probability is defined by the distribution.

Equation 13 shows that the choice probability given a particular sequence of samples depends only on the observation noise, num-

ber of samples, and mean evidence ðx =
P

xi=nÞ. This establishes the mPMF as a key assay for comparison of behavior with the

linear integration model (cf. Equation 9):

Pðr = high j x;n;shÞ =PðVn > 0 j x; n;shÞ

=

ZN
0

N
	
x;

shffiffiffi
n

p


:

(14)

Because the cPMF is defined based on accuracy, it depends on both the stimulus distribution and the stimulus-dependent noise. It

can be computed from the expected distribution of decision variables. The mean of the decision variable distribution scales linearly

with the number of samples, and its width is determined by summing the variance attributable to the random sampling of stimuli with

the variance of the accumulated noise (cf. Equation 10):
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Pðcorrect jn;mx; sx; shÞ=
ZN
0

N
�
nmx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ns2

x + ns2
h

q �
: (15)

Under linear integration, the RCFwill be flat across time for a given total number of samples. The height of the RCF conditional on a

given sample count can be found by integrating over possible values of evidence and computing the conditional probability of ac-

curacy on a trial featuring a sample with that value (cf. Equation 11):

E
�
x

0
i

��C;n;mx;sx;sh

�
=

1

PðC j n;mx;sx;shÞ
ZN
�N

x
0
i P
�
x

0
i

��mx;sx

�
P
�
C j x0

i ;n;mx; sx; sh

�
dx

0
i : (16)

The first term in the right hand side of the equation is a normalization factor, which can be obtained from Equation 15. The second

term is a weighted integral of x
0
i , where the weights are defined by both the likelihood of observing sample x

0
i and the likelihood that a

trial including that sample will lead to responseC. The computation of this term depends on whether the trial hasmore than one sam-

ple. Single-sample predictions require marginalization only over noise:

P
�
correct j x0

i ; n= 1;mx;sx;sh

�
=

ZN
0

N �x0
i ; sh

�
: (17)

With multiple samples, however, it is necessary to marginalize over the contributions of noise on sample i, yi, and the joint influence

of evidence and noise on other samples:

P
�
C j x0

i ;n > 1;mx;sx;sh

�
=

ZN
�N

Pðyi jshÞPðC j yi;sh;mx;sxÞdyi

P
�
correct j x0

i ;n > 1;mx;sx; sh

�
=

ZN
�N

Pðyi j shÞ

2664 ZN
�yi�x

0
i

N
�
ðn� 1Þmx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ

�
s2
x + s2

h

�r �3775dyi:
(18)
Extrema detection model
In the extrema detection model, the noisy perception of evidence afforded by each sample is compared against a threshold; if the

threshold is exceeded, the process terminates in a commitment to the corresponding decision. Otherwise, the sample is discarded

and the process continues. If the trial ends without a commitment, the process generates a random choice. The update equation that

produces a decision variable is defined in Equation 2. The response is determined either by a commitment during the trial or by draw-

ing a random response gj from G � Bernoullið:5Þ:

rj =

�
high if Vn = + 1 or

�
Vn = 0 and gj = 1

�
low if Vn = � 1 or

�
Vn = 0 and gj = 0

�
:

(19)

Unlike with linear integration, predicting the probability of choosing each alternative under the assumption of extrema detection

requires knowledge about the specific sequence of stimuli. Intuitively, the prediction of the ‘‘high’’ choice is based on the probability

that the noisy perception of a given sample, bxi = xi + xh, will exceed the positive threshold weighted by the probability that the pro-

cess has not yet terminated before sample i (cf. Equation 8):

Pðrj = high j x1.xn;sh; qxÞ =
Pn
i = 1

"
Pð+ qx < bxi

��shÞ
Yi�1

k =1

Pð � qx < bxk < + qx
��shÞ

#

+
1

2

Yn
i = 1

Pð � qx < bxi < + qx
�� shÞ

=
Pn
i = 1½ ZN

+ qx

Nðxi;shÞ
Yi�1

k = 1

Z+ qx

�qx

Nðxk ;shÞ�
+
1

2

Yn
i = 1

Z+ qx

�qx

Nðxi; shÞ:

(20)
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To predict the choice probability given a specific mean evidence value, x, it is necessary to marginalize over all possible stimulus

sequences that could have produced that mean. Therefore, the basic approach is to compute (cf. Equation 9):

Pðrj = high j x; n;mx;sx;sh; qxÞ= 1

Z

Z
.

Z
R

Pðx1.xn jmx; sxÞ Iðx1.xn; xÞ Hðx1.xn; sh; qxÞ dx1/dxn: (21)

Working backward, the functionH gives the probability that the stimulus sequence x1.xn will lead to a ‘‘high’’ response and can be

computed as in Equation 20. The function I is an indicator function that selects only those sequences withmean x. Non-zero response

probabilities are further weighted by the probability of observing that sequence of stimuli, which is computed using the parameters of

the evidence-generating distribution. Finally, the integrated values are divided by a normalizing constant:

Z =

Z
.

Z
R

Pðx1.xn jmx; sxÞ Iðx1.xn; xÞ dx1/dxn: (22)

In practice, the discontinuity imposed by I requires us to approximate the integrals by sampling on a dense grid with bin width u,

so I becomes

Iðx1.xn; x;uÞ=

8><>: 1 if

�����x � 1

n

Xn
i = 1

xi

����� <
u

2

0 otherwise

(23)

For predicting accuracy as a function of the number of samples, we take a similar approach as in Equation 20 but use the gener-

ating statistics rather than the specific stimulus sequences (cf. Equation 10):

Pðcorrect jn;mx;sx;sh; qxÞ=
Xn
i =1

ZN
+ qx

N
�
mx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x + s2

h

q �0B@ Z+ qx

�qx

N
�
mx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x + s2

h

q �1CA
i�1

+
1

2

0B@ Z+ qx

�qx

N
�
mx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x + s2

h

q �1CA
n

: (24)

Predicting the reverse correlation function depends on the additional observation that the conditional distribution of evidence de-

pends on whether or not the extrema detection process has terminated at that point. Let Ti represent whether the process is still

considering evidence at the ith sample, with Ti = 0 representing an active sampling process and Ti = 1 representing a terminated pro-

cess. Once the process has terminated, the samples do not bear on choice; their conditional probability given the choice is deter-

mined by the generating distribution for the stimulus, with mean mx. Further, because we are conditioning on accuracy, the active

process must be sampling from a distribution that is truncated at � qx. Therefore, the contributions of samples from these two dis-

tributions on sample i are weighted by the probability that the process has terminated prior to that sample (cf. Equation 11):

E
�
x

0
i

��C;n;mx;sx;sh; qx
�
=PðTi = 1 jC;n;mx;sx;sh; qxÞ mx +PðTi = 0 jC;n;mx; sx; sh; qxÞ E

�
x
0
i jTi = 0;C; n;mx;sx;sh; qx

�
: (25)

The conditional distribution for active processes can be further broken down by whether the noisily perceived evidence from a

given sample, bx 0
i = x

0
i + xh, is above, below, or between the thresholds:

E
�
x

0
i

��C; n;mx;sx;sh; qx
�

=PðTi = 1 jC;n;mx; sx; sh; qxÞ mx +PðTi = 0 jC; n;mx;sx;sh; qxÞh
P
�
+ qx < bx 0

i

���Ti = 0;C;n;mx;sx;sh

�
E
�
x

0
i

�� + qx < bx 0
i ;mx;sx;sh

�
+P
�
� qx < bx 0

i < + qx j Ti = 0;C;n;mx; sx; sh

�
E
�
x

0
i

�� � qx < bx 0

i < + qx;mx;sx;sh

�
+P
�bx 0

i < �qx j Ti = 0;C; n;mx;sx; sh

�
E
�
x
0
i

�� bx 0

i < � qx;mx;sx;sh

�i
:

(26)

The conditional expectations in Equation 26 require marginalizing over possible values of noise:

E
�
x

0
i

�� + qx < bx 0
i ;mx;sx;sh

�
=

ZN
�N

x
0
i P
�
x

0
i

�2664 ZN
+ qx�x

0
i

P
�
xh
�
dxh

3775dx0
i

E
�
x

0
i

�� � qx < bx 0
i < + qx;mx;sx;sh

�
=

ZN
�N

x
0
i P
�
x

0
i

�2664 Z+ qx�x
0
i

�qx�x
0
i

P
�
xh
�
dxh

3775dx0
i

E
�
x

0
i

�� bx 0

i < � qx;mx;sx; sh

�
=

ZN
�N

x
0
i P
�
x

0
i

�264 Z�qx�x
0
i

�N

P
�
xh
�
dxh

375dx0
i :

(27)
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The conditional probabilities of observing evidence at different positions with respect to the threshold in Equation 26 can be found

using Bayes rule:

P
�
+ qx < bx 0

i

���Ti = 0;C;n;mx; sx; sh

�
=
P
�
C j + qx < bx 0

i ; Ti = 0
�
P
�
+ qx < bx 0

i

���mx; sx;sh

�
PðC jTi = 0;n;mx; sx; shÞ

P
�
� qx < bx 0

i < + qx

���Ti = 0;C;n;mx;sx;sh

�
=
P
�
C j � qx < bx 0

i < + qx;Ti = 0
�
P
�
� qx < bx 0

i < + qx

���mx; sx; sh

�
PðC jTi = 0;n;mx;sx;shÞ

P
�bx 0

i < � qx

���Ti = 0;C; n;mx;sx;sh

�
=
P
�
C j bx 0

i < � qx; Ti = 0
�
P
�bx 0

i < � qx

���mx;sx;sh

�
PðC jTi = 0;n;mx; sx; shÞ :

(28)

The conditional probability of accuracy given an observation between the thresholds in Equation 28 can be found using Equation 24

but substituting n� i + 1 for n. The conditional probabilities given observations above or below the threshold in Equation 28 are given

by the definition of the extrema detection process:

P
�
correct j + q < bx 0

i ; Ti = 0
�

= 1

P
�
wrong j + q < bx 0

i ; Ti = 0
�

= 0

P
�
correct j bx 0

i < � q; Ti = 0
�

= 0

P
�
wrong j bx 0

i < � q; Ti = 0
�

= 1:

(29)

The second term in each numerator of Equation 28 is the marginal probability of observing evidence in each segment, which de-

pends on the parameters of the distribution that generates evidence and also on the noise:

P
�
+ qx < bx 0

i

���mx; sx; sh

�
=

Z N

+ qx

N
�
mx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x + s2

h

q �
P
�
� qx < bx 0

i < + qx

���mx; sx;sh

�
=

Z + qx

�qx

N
�
mx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x + s2

h

q �
P
�bx 0

i < � qx

���mx;sx;sh

�
=

Z �qx

�N

N
�
mx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x + s2

h

q �
:

(30)

Each denominator in Equation 28 is the probability of response accuracy conditional on the process not having terminated at sam-

ple i, which again can be found using Equation 24 with n� i + 1 substituted for n.

So far, we have derived all the terms necessary for the calculation of the RCF (Equation 26) except for the probability of having or

not having terminated before sample i. A process that has not terminated prior to sample i has observed only intermediate values of

noisy evidence up to that point, and the probability of this occurring can be computed using Equation 28:

PðTi = 0 jC; n;mx;sx;sh; qxÞ=PðC j Ti = 0;n;mx;sx;sh; qxÞ
PðC jn;mx;sx;sh; qxÞ P

�� qx < bx 0
i < + qx

��C;mx;sx;sh

�i�1

PðTi = 1 j correct; n;mx;sx; sh; qxÞ=
Xi

k = 1

Z N

+ qx

N
�
mx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x + s2

h

q �0B@Z + qx

�qx

N
�
mx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x + s2

h

q �1CA
k�1

;

(31)

where PðC jn;mx;sx;sh; qxÞ is derived from Equation 24. PðC jTi = 0;n;mx; sx; sh; qxÞ is derived from the same equation but by re-

placing n with n� i + 1.

Counting model
In the counting model, each sample undergoes a transformation to a positive or negative increment, and a discrete count is main-

tained across samples. The process is defined in Equation 3. The response is determined by the sign of the decision variable at the

end of the trial. Because V is maintained as a discrete count, it is possible that trials with an even number of samples will end in a tie

ðVn = 0Þ. In this case, as with the extrema detection model, the response is generated using a random guess gj from

G � Bernoullið:5Þ:

rj =

�
high if Vn > 0 or

�
Vn = 0 and gj = 1

�
low if Vn < 0 or

�
Vn = 0 and gj = 0

�
:

(32)

Therefore, the probability of a ‘‘high’’ response equals the sum of two probabilities: the probability of positive increments for more

than half of samples or a positive increment in exactly half and a positive random guess. If we define V�
n as representing the number of

positive increments from n samples, the choice probability becomes (cf. Equation 8)
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Pðrj = high
�� x1.xn;shÞ=PðVn > 0 j x1.xn;shÞ+ 1

2
PðVn = 0

�� x1.xn;shÞ

=
Xn

k =

n+1
2

�P
�
V�
n = k

�� x1.xn; sh

�
+
1

2
P
�
V�
n =

n

2

��� x1.xn; sh

�
;

(33)

where d:e is the ceiling function. There is a unique probability of each sample producing a positive increment in the accumulator. For

sample xi the probability of an increment is

Pðci = 1 j xi;shÞ=
Z N

0

Nðxi;shÞ: (34)

Further, observe that

P
�
V�
n = k

�
=P
�
V�
n�1 = k

�
Pðci = 0

�� xi; shÞ+P
�
V�
n�1 = k � 1

�
Pðci = 1

�� xi; shÞ: (35)

We can recursively apply this equation to compute the probabilities in Equation 33.

Predicting choice probability from a specific mean evidence value (the mPMF) follows a similar approach to the one taken for the

extrema detection model using Equation 21. The only difference is the Hð:Þ function; for the counting model, we can use Equation 33

to compute the choice probability for a given sequence of stimuli.

To generate a prediction for the cPMF under the counting model, we also take a similar approach as in Equation 33. But it

is not necessary to consider each idiosyncratic sequence. Instead, the probability that the count of increments supporting

the correct response takes any particular value can be calculated based on a Binomial random variable with success probability

p =
RN
0 Nðmx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x + s2h

q
Þ. The count psychometric function can therefore be expressed as (cf. Equation 10)

Pðcorrect j n;pÞ=
Xn

k =


ðn+ 1Þ

2

�
 
n

k

!
pkð1� pÞn�k +

1

2

8>>>><>>>>:

0BB@
n

n

2

1CCAp
n
2ð1� pÞn2 n even

0 n odd

(36)

where

	
n
k



is the binomial coefficient function (n choose k). The first term on the right hand side of the equation gives the probability

of success due to a count that favors the right choice, while the second term gives the probability of success due to guessing

correctly after a tie.

The countingmodelmakes a qualitative prediction that accuracy on trials with an even number of sampleswill not exceed accuracy

on trials with the next smallest odd number. This result follows from Equation 36, but the logic behind it can also be seen by consid-

ering the possible sequence of events on each trial. If the probability that a sample will support the correct choice is p, then the prob-

ability of responding correctly on a trial with two samples can be written as

Pðcorrect j n= 2Þ =p2 +
1

2
pð1� pÞ+ 1

2
ð1� pÞp

=p

=Pðcorrect j n= 1Þ:

(37)

This shows the equivalence between accuracy on one-sample and two-sample trials. The logic can be extended to pairs of trial

types with larger numbers of samples.

Similar to the case with linear integration, the RCF for the counting model will be flat for a given total number of samples. It can be

computed in general using Equation 16 with a change in the conditional probabilities and normalization constant. The normalization

constant can be found using Equation 36. As with linear integration, the conditional probability of response accuracy given evidence

on sample i is different for single and multiple sample trials. In fact, the two models make identical predictions for single sample trials

(Equation 17). For multi-sample trials, the conditional probability depends on whether sample i will produce a positive or negative

increment in the count:

P
�
C j x0

i ;n;mx;sx;sh

�
=P
�
C j bx 0

i > 0;n;mx; sx; sh

�
P
�bx 0

i > 0
�� x0

i ;sh

�
+P
�
C j bx 0

i < 0;n;mx; sx; sh

�
P
�bx 0

i < 0
�� x0

i ;sh

�
=P
�
C j bx 0

i > 0;n;mx; sx; sh

�Z N

0

N �x0
i ; sh

�
+P
�
C j bx 0

i < 0; n;mx;sx; sh

�Z 0

�N

N �x0
i ;sh

�
:

(38)
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The conditional probabilities use the Binomial distribution following a similar logic to what we used when computing the cPMF

(Equation 36). If bx 0

i > 0, getting a correct response requires the remaining n� 1 samples to produce at least n=2 positive increments

or n=2� 1 positive increments and a lucky guess. If bx 0
i < 0, the remaining n� 1 samples must produce at least ðn+ 1Þ=2 positive

increments or n=2 positive increments and a lucky guess.

Leaky integration model
The leaky integration model extends the linear integration model to account for two additional factors that could influence the

decision variable as a function of time. The process is defined in Equation 4. As in linear integration, the response is determined

by the sign of the decision variable at the end of the trial.

To fit the model, we use the fact that as Dt/0, the change in the decision variable during the gaps can be described with an

Ornstein-Uhlenbeck (OU) process. If sample i at time ti is followed by gap duration Tg, the OU process transforms the Gaussian

distribution of the decision variable after sample i, NðmðtiÞ; sðtiÞÞ, to another Gaussian distribution with the following mean and

variance at the end of the gap:

m
�
ti +Tg

�
= e�lTgmðtiÞ

s2
�
ti +Tg

�
= e�2lTgs2ðtiÞ+

�
1� e�2lTg

� s2
ε

2l
:

(39)

At the end of the trial, time T, the choice likelihood is given by integrating the positive density of the resulting distribution following all

samples and gaps (cf. Equation 8):

Pðrj = high j xi.xn;sh;sε; lÞ=
Z N

0

NðmðTÞ; sðTÞÞ: (40)

Analytic predictions for the behavioral assays could be obtained by extending the equations of the linear integration model for an

OU process. However, the resulting equations would be complex because they would need to marginalize over all gap durations in

the experiment. We avoid this complexity by using Monte Carlo simulation of model performance for the trials in the behavioral data-

sets (5 simulations per trial; Dt = 100 ms) and comparing the simulated model behavior to that of our subjects.

This modeling framework also allowed us to evaluate whether time-independent leak could explain the data, which we accom-

plished by setting the gap between each sample to a uniform duration and re-fitting the model. This produced results that were

entirely consistent with those using time-dependent leak that are reported in the main results.

Finally, we confirmed that our conclusions about themagnitude ofmemory leakwould be robust to transformations of the evidence

that introduce a compressive nonlinearity, as Figure 3B suggests. Model simulations showed that the leaky integration model, as

defined here, would only over-estimate the leak rate when fit to data generated by a process that includes both significant leak

and a compressive nonlinearity. This is expected because compression and leak both disproportionately reduce the influence of

strong samples. Therefore, to the extent that compression exists in the data, it is only causing us to under-estimate the integration

time constant that humans can achieve.

DATA AND SOFTWARE AVAILABILITY

Experimental data and code will be made available at https://github.com/kianilab/Waskom_CurrBiol_2018.
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Figure S1: Computational model predictions for different behavioral assays Related to Figures 2–4. 
(A) Predictions of the Linear Integration model when varying the magnitude of noise, ση. Unlike in Figures 
2 and S2, RCF predictions are shown averaged over ordinal sample positions, aligned to either the start or 
end of the trial. Note how the variable distribution of sample counts produces an apparent nonlinearity for 
Linear Integration even though samples are weighted equally across time. (B) Predictions of the Extrema 
Detection model when varying the height of the detection threshold, θx, while holding noise constant (ση = 
0.2). (C) Predictions of the Counting model when varying the magnitude of noise, ση. (D) Simulated 
performance for the Leaky Integration model (N = 100,000 trials). The left panels show simulations varying 
the memory leak rate, λ, while holding the noise terms constant (ση = 0.4 and σϵ = 0). The right panels 
show simulations varying the memory noise magnitude, σϵ while holding stimulus-dependent noise and 
memory leak constant (ση = 0.4 and λ = 0). The widths of the bands show 95% confidence intervals.
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Figure S2: Integration of evidence across samples. Related to Figure 2. Each row shows data 
and model fits for individual subjects. (A-C) Individual data and model fits for the three main behavioral 
assays, as in Figure 2A-C. (D) Estimated model parameters (points) and bootstrap confidence intervals 
(thick and thin error bars show 68% and 95% CIs, respectively).
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Figure S3: Integration of graded stimulus evidence. Related to Figure 3. Each row shows data 
and model fits for individual subjects. (A) Individual data and model mPMFs. (B-C) Individual data and 
model fits corresponding to Figure 3. (D) Estimated model parameters (points) and bootstrap confidence 
intervals (thick and thin error bars show 68% and 95% CIs, respectively).
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Figure S4: Minimal influence of memory leak or noise. Related to Figure 4. Each row shows data 
and model fits for individual subjects. (A-C) Individual data and model fits corresponding to Figure 4.
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